
Restart optimization using incremental context
saving in hardware transactional memory

Zaharije Radivojević, Miloš Cvetanović
School of Electrical Engineering, Belgrade University

16th Workshop
“Software Engineering Education and Reverse Engineering”

Jahorina, Bosnia and Herzegovina
21-27 August 2016

16th Workshop SEE and RE 2/25

Agenda

• Background
• Transactional Memory
• Restart Optimization
• Model and Simulation
• Results
• Conclusions

16th Workshop SEE and RE 3/25

Background

Fields of interest:
• Concurrent programming
• Simulations
• Database systems
• Computer architecture

Is there a cross-section?
• Hardware transactional memory!

16th Workshop SEE and RE 4/25

Hardware transactional memory

• The goal of (hardware) transactional memory is to
simplify multi-core concurrent programming.

• Transactional memory provides run-time support,
which includes
– atomicity,
– concurrency,
– isolation.

16th Workshop SEE and RE 5/25

Hardware transactional memory

Cache
memory

Core

Memory

Cache
memory

Core

...

Multi-core system

Transactional
memory

16th Workshop SEE and RE 6/25

Hardware transactional memory

Version management defines whether modifications
• perform directly to the shared data

(eager version management),
• are buffered as speculative writes

(lazy version management).

...

Start
Write A
Write B
End

16th Workshop SEE and RE 7/25

Hardware transactional memory

Conflict detection
• Eager conflict detection tends to prevent possible

conflicts by introducing synchronization mechanisms
that stall the offending transactions.

• Lazy conflict detection tends to react to
consequences of the conflicts afterwards by aborting
and restarting the offending transactions.

...

Start
Write A
Write B
End

Stall A
Stall B

Restart if A
Restart if B

16th Workshop SEE and RE 8/25

Hardware transactional memory

Version Management

Lazy Eager

C
onflict D

etection

Lazy
Eager

O
ptim

istic
Pesim

istic

16th Workshop SEE and RE 9/25

Transactions

time

Transaction
on Core 1

No transactions on
other cores

D1 D1, D2Start End

16th Workshop SEE and RE 10/25

Transactions

time

Transaction
on Core 1

Other transactions

D1 D1, D2Start End

D2 D2

16th Workshop SEE and RE 11/25

Restart Optimization

• Is it possible not to restart to the beginning of a
transaction?

• If possible what is a place in the transaction where
can be safely restarted to?

• Instead of restarting from the start, the transaction
restarts from the last valid state. The last valid state
corresponds to the context of the transaction just
before the first access to the shared data that caused
the restart.

16th Workshop SEE and RE 12/25

Transactions

time

Transaction
on Core 1

Other transactions

D1 D1, D2Start End

D2 D2

16th Workshop SEE and RE 13/25

Transactional Memory

• What is a context to be saved?
– Core context
– Cache context

• When to save context?
– Core context – when accessing date for the first time
– Cache context – when changing data

• Does saving context slows down transactions?
– Core context – first time access = Cache Miss!
– Cache context – Parallel write

16th Workshop SEE and RE 14/25

Transactional Memory

Core

Attrib Tag Data

Context

Load/Store
Address

Broadcast Bus

Data
Cache Id Version

Cache

Core contexts
saved after each

new line fetch

Cache line Id number
defining order in which

cache lines were modified

Different versions of
speculatively

modified cache lines

3 2

Context
Buffer

1

16th Workshop SEE and RE 15/25

Model

L
)R4()R1(

)R2()T(E
2

⋅
−⋅−

−
=

 −⋅

+

−
−

−=
L

)L(F1

L
V

L
)T(E

)1N(nr

e1R

dt
KnUU
KUnU

n
L
Kt

exF
x

w

w

n

n

n
nr ∫∑ −−⋅

−⋅−
⋅⋅=

∞+

=

−

0 0)!(!
)!()!(

!

)(
)(

16th Workshop SEE and RE 16/25

Model

16th Workshop SEE and RE 17/25

Simulation

Core 1

JPC

TM

Core 2

JPC

TM

Core x

JPC

TM

BUS Interface

Main memory

Barrier

Protocol

Protocol

...

RTL simulation

16th Workshop SEE and RE 18/25

Model and Simulation

Parameter Name Typical range * Default value **

Time outside of a transaction V/L 0.03-32.3 0.1

Access set K 20-800 600

Read set Kr 10-800 400

Write set Kw 10-800 300

Number of memory accesses B 15-220000 6000

Working set U 10000-3000000 40000

Write probability Pw 0.05-0.49 0.3

Number of cores N 2-32 4

Simulation parameters

16th Workshop SEE and RE 19/25

Model and Simulation

Results for restart probability depending on the number of cores

16th Workshop SEE and RE 20/25

Model and Simulation

Results for relative gain depending on the working set size

16th Workshop SEE and RE 21/25

Model and Simulation

Results for results for the required space depending on the write probability

16th Workshop SEE and RE 22/25

Model and Simulation

execution time spent in transactions

16th Workshop SEE and RE 23/25

Model and Simulation

execution time spent in transactions that restarted at least once

???

• The simulation results indicate that the optimization
does not have a significant influence on the value of
the restart probability.

• The expected relative gain for transactions that have
been restarted at least once is a monotonically
increasing function with values ranging from 0.17 to
0.33.

• The generality of the presented approach allows its
applicability to other types of transactional memory
with lazy version management regardless of the
conflict detection strategy.

16th Workshop SEE and RE 24/25

Conclusion

Thank you!

Radivojevic Zaharije

	Restart optimization using incremental context saving in hardware transactional memory
	Agenda
	Background
	Hardware transactional memory
	Hardware transactional memory
	Hardware transactional memory
	Hardware transactional memory
	Hardware transactional memory
	Transactions
	Transactions
	Restart Optimization
	Transactions
	Transactional Memory
	Transactional Memory
	Model
	Model
	Simulation
	Model and Simulation
	Model and Simulation
	Model and Simulation
	Model and Simulation
	Model and Simulation
	Model and Simulation
	Conclusion
	Thank you!

