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Background

Fields of interest:
• Concurrent programming
• Simulations
• Database systems
• Computer architecture

Is there a cross-section?
• Hardware transactional memory!
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Hardware transactional memory

• The goal of (hardware) transactional memory is to 
simplify multi-core concurrent programming.

• Transactional memory provides run-time support, 
which includes 
– atomicity, 
– concurrency,
– isolation. 



16th Workshop SEE and RE 5/25

Hardware transactional memory
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Hardware transactional memory

Version management defines whether modifications
• perform directly to the shared data 

(eager version management), 
• are buffered as speculative writes 

(lazy version management).

...
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Hardware transactional memory

Conflict detection
• Eager conflict detection tends to prevent possible 

conflicts by introducing synchronization mechanisms 
that stall the offending transactions. 

• Lazy conflict detection tends to react to 
consequences of the conflicts afterwards by aborting 
and restarting the offending transactions.

...
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Hardware transactional memory
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Transactions
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Transactions
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Restart Optimization

• Is it possible not to restart to the beginning of a 
transaction?

• If possible what is a place in the transaction where 
can be safely restarted to?

• Instead of restarting from the start, the transaction 
restarts from the last valid state. The last valid state 
corresponds to the context of the transaction just 
before the first access to the shared data that caused 
the restart.
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Transactions
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Transactional Memory

• What is a context to be saved?
– Core context 
– Cache context

• When to save context?
– Core context – when accessing date for the first time
– Cache context – when changing data

• Does saving context slows down transactions?
– Core context – first time access = Cache Miss!
– Cache context – Parallel write
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Transactional Memory
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Model
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Model
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Simulation
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Model and Simulation

Parameter Name Typical range * Default value **

Time outside of a transaction V/L 0.03-32.3 0.1

Access set K 20-800 600

Read set Kr 10-800 400

Write set Kw 10-800 300

Number of memory accesses B 15-220000 6000

Working set U 10000-3000000 40000

Write probability Pw 0.05-0.49 0.3

Number of cores N 2-32 4

Simulation parameters
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Model and Simulation

Results for restart probability depending on the number of cores
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Model and Simulation

Results for relative gain depending on the working set size



16th Workshop SEE and RE 21/25

Model and Simulation

Results for results for the required space depending on the write probability
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Model and Simulation

execution time spent in transactions
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Model and Simulation

execution time spent in transactions that restarted at least once 

???



• The simulation results indicate that the optimization 
does not have a significant influence on the value of 
the restart probability. 

• The expected relative gain for transactions that have 
been restarted at least once is a monotonically 
increasing function with values ranging from 0.17 to 
0.33. 

• The generality of the presented approach allows its 
applicability to other types of transactional memory 
with lazy version management regardless of the 
conflict detection strategy.
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Conclusion



Thank you!

Radivojevic Zaharije
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